

DPP - 5 (COM)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solutionon Website:-

Q 1. A particle of mass m is made to move with uniform speed v_{0} along the perimeter of a regular hexagon. The magnitude of impulse applied at each corner of the hexagon is
(a) $2 \mathrm{mv}_{0} \sin \frac{\pi}{6}$
(b) $m v_{0} \sin \frac{\pi}{6}$
(c) $m v_{0} \sin \frac{\pi}{3}$
(d) $2 m v_{0} \sin \frac{\pi}{3}$

Q 2. Displacement of a particle of mass 2 kg moving In a straight line varies with time as s $=\left(2 t^{3}+2\right) \mathrm{m}$. Impulse of the force acting on the particle over a time interval between t $=0$ and $\mathrm{t}=1 \mathrm{~s}$ is:
(a) $10 \mathrm{~N}-\mathrm{s}$
(b) $12 \mathrm{~N}-\mathrm{s}$
(c) $8 \mathrm{~N}-\mathrm{s}$
(d) $6 \mathrm{~N}-\mathrm{s}$

Q 3. The magnitude of force (in Newtons) acting on a body varies with time (in micro second) as shown in the figure. The magnitude of total impulse of the force on the body from $t=4 \mu \mathrm{~s}$ to $\mathrm{t}=16 \mu \mathrm{~s}$ is -

(a) $5 \times 10^{-2} \mathrm{Ns}$
(b) $5 \times 10^{-3} \mathrm{Ns}$
(c) $5 \times 10^{-4} \mathrm{Ns}$
(d) $5 \times 10^{-6} \mathrm{Ns}$

Q 4. An impulse \vec{I} changes the velocity of a particle from \vec{V}_{1} to \vec{V}_{2}. Kinetic energy gained by the particle is -
(a) $\left.(1 / 2) \vec{I} \underset{\rightarrow}{\left(\vec{V}_{1}\right.}+\vec{V}_{2}\right)$
(b) $(1 / 2) \vec{I}\left(\vec{V}_{1}-\vec{V}_{2}\right)$
(c) $\left.\vec{I} \xrightarrow[\rightarrow]{\left(\vec{V}_{2}-\vec{V}_{1}\right.}\right)$
(d) $\vec{I}\left(\vec{V}_{2}+\vec{V}_{1}\right)$

Q 5. Displacement-time graph of a particle moving in a straight line is as shown in figure. Mass of the particle is 2 kg . The total Impulse imparted to the particle in a time interval from $t=0$ to $t=6 \sin N-s$ will be

(a) 30
(b) 15
(c) -30
(d) -15

Q 6. A block of mass m is moved towards a movable wedge of mass $M=2 m$ and height h with velocity u (All surfaces are smooth). If the block just reaches the top of the wedge, the magnitude of horizontal impulse by wedge on block is -

(a) $\mathrm{mu} / 3$
(b) $m u / 2$
(c) $2 \mathrm{mu} / 3$
(d) mu

Q 7. A spring of stiffness K is attached with two blocks A and B. This spring blocks system is placed on smooth ground with spring in natural length. At $t=0$, an external agent starts pulling block A with constant velocity u. Impulse by spring to block B when spring regains its naturablength first time is?

(a) 0
(b) mu
(c) 2 mu
(d) $\mathrm{mu} / 2$

Q 8. A force $\mathrm{F}=\operatorname{Sin} \mathrm{t}$, is acting on a particle. Maximum impulse that the force can supply to particle is
(a) 1 unit
(b) 2 unit
(c) 3 unit
(d) 4 unit

Q 9. A block of mass 1 kg is projected on rough horizontal plane with initial velocity 6 $\mathrm{m} / \mathrm{sec}$. coefficient of friction is $\mu=\mathrm{x} / 3$, where x is displacement of block. Magnitude of total impulse imparted by friction on block is
(a) $3 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(b) $6 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(c) $12 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(d) $9 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$

Q 10. A sphere of radius 1 meter and mass 1 kg is placed on smooth ground. An impulse of $20 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$ is imparted on it as shown in figure. Find velocity of sphere after imparting impulse ?(sphere is not bouncing up)

(a) $20 \mathrm{~m} / \mathrm{sec}$
(b) $10 \mathrm{~m} / \mathrm{sec}$
(c) $17 \mathrm{~m} / \mathrm{sec}$
(d) $8.5 \mathrm{~m} / \mathrm{sec}$

Q 11. In given figure ' B ' and ' C ' have equal mass 1 kg each and mass of ' A ' is 2 kg . system was initially at rest. A ball of mass 1 kg hits ' A ' with speed $25 \mathrm{~m} / \mathrm{sec}$ as shown in figure and sticks with it. Velocity of 'A' just after hitting is

(a) $4 \mathrm{~m} / \mathrm{Sec}$
(b) $6 \mathrm{~m} / \mathrm{Sec}$
(c) $16 \mathrm{~m} / \mathrm{Sec}$
(d) $8 \mathrm{~m} / \mathrm{Sec}$

Answer Key

Q. 1 a	Q. 2 b	Q. 3 b	Q. 4 a	Q.5 d
Q. 6 c	Q. 7 c	Q.8 b	Q.9 b	Q. 10 b
Q.11 d				

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

Written Solution

DPP- 5 : Impulse , Impulse Momentum Theorem
By Physicsaholics Team
Q.1) A particle of mass m is made to move with uniform speed v_{0} along the perimeter of a regular hexagon. The magnitude of impulse applied at each corner of the hexagon is
(a) $2 \mathrm{mv}_{0} \sin \frac{\pi}{6}$
(b) $m v_{0} \sin \frac{\pi}{6}$
(c) $m v_{0} \sin \frac{\pi}{3}$

(d) $2 \mathrm{mv}_{0} \sin \frac{\pi}{3}$

$$
I=\mid \overrightarrow{\& P})=\left|P_{f}-\overrightarrow{P_{i}}\right|=2\left(m V_{0}\right) \operatorname{Sin}\left(\frac{60}{2}\right)
$$

$$
B=2 \ln V_{0} S_{\ln }(\pi / 6)
$$

Q.2) Displacement of a particle of mass 2 kg moving In a straight line varies with time as $s=\left(2 t^{3}+2\right) \mathrm{m}$. Impulse of the force acting on the particle over a time interval between $t=0$ and $t=1 \mathrm{~s}$ is:

$$
\begin{aligned}
I & =\Delta P=m V_{f}-m V_{i} \\
& =m\left(V_{f}-V_{i}\right) \\
& =2(6-0)=121-s \quad \begin{array}{l}
a+s+2 \\
a+
\end{array} \quad t=0, V=0
\end{aligned}
$$

(a) $10 \mathrm{~N}-\mathrm{s}$
(c) $8 \mathrm{~N}-\mathrm{s}$
(d) $6 \mathrm{~N}-\mathrm{s}$
Q.3) The magnitude of force (in Newtons) acting on a body varies with time (in micro second) as shown in the figure. The magnitude of total impulse of the force on the body from $t=4 \mu \mathrm{~s}$ to $\mathrm{t}=16 \mu \mathrm{~s}$ is -

$$
\begin{aligned}
\vec{I} & =\int \vec{F} d t \\
I & =\int F d t=\text { Area } \\
& =\frac{1}{2} \times(6-4)(800+200) \\
& +\frac{1}{2}(16-6)(800)
\end{aligned}
$$

(a) $5 \times 10^{-2} \mathrm{Ns}$
(b) $5 \times 10^{-3} \mathrm{Ns}$
(c) $5 \times 10^{-4} \mathrm{Ns}$

$$
\begin{aligned}
I & =\frac{1}{2} \times 3 \times 1000+\frac{1}{2} \times 10 \times 800 \\
& =5000 \mathrm{lN} \mathrm{~N}=5 \times 10^{-3} \mathrm{NS}
\end{aligned}
$$

Q.4) An impulse \vec{I} changes the velocity of a particle from \vec{V}_{1} to \vec{V}_{2}. Kinetic energy gained by the particle is -

$$
\begin{aligned}
& \left(\overline{v_{2}}+\overline{v_{1}}\right) \cdot\left(\overline{v_{2}}-\overline{v_{1}}\right) \\
& =\bar{v}_{2} \cdot \bar{v}_{2}-\overline{x_{2}} \cdot \bar{v}_{1}+\overline{\nabla_{1} \cdot v_{2}} \\
& =v_{2}^{2}-v_{1}^{2}-\bar{v}_{1} \cdot v_{1}
\end{aligned}
$$

$$
\Delta k=-\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)
$$

(a) $(1 / 2) \vec{I}\left(\vec{V}_{1}+\vec{V}_{2}\right)$

$$
=\frac{1}{2} m\left(\vec{V}_{2}+\overrightarrow{V_{1}}+\left(\vec{V}_{2}-\overrightarrow{V_{1}}\right)\right.
$$

(b) $(1 / 2) I(1 / 4) V_{2}$

$$
=\frac{1}{2}(\bar{I})\left(\overrightarrow{v_{2}}+\nabla_{1}\right)
$$

(c) $I \xrightarrow[\rightarrow]{I}\left(V_{2}-V_{1}\right)$
(d) $I\left(V_{2}+V_{1}\right)$
Q.5) Displacement-time graph of a particle moving in a straight line is as shown in figure. Mass of the particle is 2 kg . The total Impulse imparted to the particle in a time interval from $\mathrm{t}=0$ to $\mathrm{t}=6 \sin \mathrm{~N}$-s will be

Q.6) A block of mass m is moved towards a movable wedge of mass $M=2 \mathrm{~m}$ and height h with velocity u (All surfaces are smooth). If the block just reaches the top of the wedge, the magnitude of horizontal impulse by wedge on block is $\bar{v}=0$ (w.r.t.M)

Q.7) A spring of stiffness K is attached with two blocks A and B . This spring blocks system is placed on smooth ground with spring in natural length. At $t=0$, an external agent starts pulling block A with constant velocity u. Impulse by spring to block B when spring regains its natural length first time is ?

When fleck B returns first +inst N. length. position of natural length of spring \rightarrow
(a) 0
(b) mu
(c) 2 mu
(d) $\mathrm{mu} / 2$

$$
D=\Delta P \text { of } B=2 m U-0=2 m 4
$$

Q.8) A force $F=\operatorname{Sin} t$, is acting on a particle. Maximumimpulse that the force can supply to particle is
(a) 1 unit
(b) 2 unit
(c) 3 unit
(d) 4 unit

Admix $=\int_{0}^{\pi} \sin t d t$

$$
\begin{aligned}
=[-\cos t]_{0}^{\pi} & =(-\cos \pi)-(-\cos 0) \\
& =1+1=2
\end{aligned}
$$

Q.9) A block of mass 1 kg is projected on rough horizontal plane with initial velocity $6 \mathrm{~m} / \mathrm{sec}$. coefficient of friction is $\mu=\mathrm{x} / 3$, where x is displacement of block. Magnitude of total impulse imparted by friction on block is
(a) $3 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(b) $6 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$? $I_{f}=\Delta 8_{\text {hor }}$ O- 1×6
(c) $12 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$
(d) $9 \mathrm{Kg} \mathrm{m} / \mathrm{sec}$

$$
J_{s} P=6 \mathrm{kgm} / \mathrm{gcc}
$$

Q.10) A sphere of radius 1 meter and mass 1 kg is placed on smooth ground. An impulse of $20 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$ is imparted on it as shown in figure. Find velocity of sphere after imparting impulse?(sphere is not bouncing up)

$$
\begin{aligned}
& F C 1+\operatorname{Cos} 60^{\circ}=1 \times V-0 \\
& 20 \times \frac{1}{2}=V
\end{aligned}
$$

(a) $20 \mathrm{~m} / \mathrm{sec}$
(c) $17 \mathrm{~m} / \mathrm{sec}$

Q.11) In given figure ' B ' and ' C ' have equal mass 1 kg each and mass of ' A ' is 2 kg . system was initially at rest. A ball of mass 1 kg hits 'A' with speed $25 \mathrm{~m} / \mathrm{sec}$ as shown in figure and sticks with it. Velocity of ' A 'just after bitting is

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/76
https://youtu.be/sBcJFOZjGQE
https://physicsaholics.com/note/notesDetalis/81

Chalo Nikis

